'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(f(f(a()))) -> mark(f(g(f(a()))))
     , active(f(X)) -> f(active(X))
     , f(mark(X)) -> mark(f(X))
     , proper(f(X)) -> f(proper(X))
     , proper(a()) -> ok(a())
     , proper(g(X)) -> g(proper(X))
     , f(ok(X)) -> ok(f(X))
     , g(ok(X)) -> ok(g(X))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))
    , active^#(f(X)) -> c_1(f^#(active(X)))
    , f^#(mark(X)) -> c_2(f^#(X))
    , proper^#(f(X)) -> c_3(f^#(proper(X)))
    , proper^#(a()) -> c_4()
    , proper^#(g(X)) -> c_5(g^#(proper(X)))
    , f^#(ok(X)) -> c_6(f^#(X))
    , g^#(ok(X)) -> c_7(g^#(X))
    , top^#(mark(X)) -> c_8(top^#(proper(X)))
    , top^#(ok(X)) -> c_9(top^#(active(X)))}
  
  The usable rules are:
   {  active(f(f(a()))) -> mark(f(g(f(a()))))
    , active(f(X)) -> f(active(X))
    , f(mark(X)) -> mark(f(X))
    , proper(f(X)) -> f(proper(X))
    , proper(a()) -> ok(a())
    , proper(g(X)) -> g(proper(X))
    , f(ok(X)) -> ok(f(X))
    , g(ok(X)) -> ok(g(X))}
  
  The estimated dependency graph contains the following edges:
   {active^#(f(X)) -> c_1(f^#(active(X)))}
     ==> {f^#(ok(X)) -> c_6(f^#(X))}
   {active^#(f(X)) -> c_1(f^#(active(X)))}
     ==> {f^#(mark(X)) -> c_2(f^#(X))}
   {f^#(mark(X)) -> c_2(f^#(X))}
     ==> {f^#(ok(X)) -> c_6(f^#(X))}
   {f^#(mark(X)) -> c_2(f^#(X))}
     ==> {f^#(mark(X)) -> c_2(f^#(X))}
   {proper^#(f(X)) -> c_3(f^#(proper(X)))}
     ==> {f^#(ok(X)) -> c_6(f^#(X))}
   {proper^#(f(X)) -> c_3(f^#(proper(X)))}
     ==> {f^#(mark(X)) -> c_2(f^#(X))}
   {proper^#(g(X)) -> c_5(g^#(proper(X)))}
     ==> {g^#(ok(X)) -> c_7(g^#(X))}
   {f^#(ok(X)) -> c_6(f^#(X))}
     ==> {f^#(ok(X)) -> c_6(f^#(X))}
   {f^#(ok(X)) -> c_6(f^#(X))}
     ==> {f^#(mark(X)) -> c_2(f^#(X))}
   {g^#(ok(X)) -> c_7(g^#(X))}
     ==> {g^#(ok(X)) -> c_7(g^#(X))}
   {top^#(mark(X)) -> c_8(top^#(proper(X)))}
     ==> {top^#(ok(X)) -> c_9(top^#(active(X)))}
   {top^#(mark(X)) -> c_8(top^#(proper(X)))}
     ==> {top^#(mark(X)) -> c_8(top^#(proper(X)))}
   {top^#(ok(X)) -> c_9(top^#(active(X)))}
     ==> {top^#(ok(X)) -> c_9(top^#(active(X)))}
   {top^#(ok(X)) -> c_9(top^#(active(X)))}
     ==> {top^#(mark(X)) -> c_8(top^#(proper(X)))}
  
  We consider the following path(s):
   1) {  top^#(mark(X)) -> c_8(top^#(proper(X)))
       , top^#(ok(X)) -> c_9(top^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(f(f(a()))) -> mark(f(g(f(a()))))
       , active(f(X)) -> f(active(X))
       , proper(f(X)) -> f(proper(X))
       , proper(a()) -> ok(a())
       , proper(g(X)) -> g(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(f(a()))) -> mark(f(g(f(a()))))
               , active(f(X)) -> f(active(X))
               , proper(f(X)) -> f(proper(X))
               , proper(a()) -> ok(a())
               , proper(g(X)) -> g(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , top^#(mark(X)) -> c_8(top^#(proper(X)))
               , top^#(ok(X)) -> c_9(top^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {top^#(ok(X)) -> c_9(top^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(ok(X)) -> c_9(top^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [5]
                  c_9(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(a()) -> ok(a())}
            and weakly orienting the rules
            {top^#(ok(X)) -> c_9(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(a()) -> ok(a())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [5]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [3]
                  c_8(x1) = [1] x1 + [4]
                  c_9(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(f(a()))) -> mark(f(g(f(a()))))}
            and weakly orienting the rules
            {  proper(a()) -> ok(a())
             , top^#(ok(X)) -> c_9(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(f(a()))) -> mark(f(g(f(a()))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [8]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [12]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [2]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , top^#(mark(X)) -> c_8(top^#(proper(X)))}
              Weak Rules:
                {  active(f(f(a()))) -> mark(f(g(f(a()))))
                 , proper(a()) -> ok(a())
                 , top^#(ok(X)) -> c_9(top^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , top^#(mark(X)) -> c_8(top^#(proper(X)))}
                Weak Rules:
                  {  active(f(f(a()))) -> mark(f(g(f(a()))))
                   , proper(a()) -> ok(a())
                   , top^#(ok(X)) -> c_9(top^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  active_0(2) -> 4
                 , active_1(2) -> 9
                 , active_1(7) -> 11
                 , a_0() -> 2
                 , a_1() -> 7
                 , mark_0(2) -> 2
                 , proper_1(2) -> 6
                 , ok_0(2) -> 2
                 , ok_1(7) -> 6
                 , top^#_0(2) -> 1
                 , top^#_0(4) -> 3
                 , top^#_1(6) -> 5
                 , top^#_1(9) -> 8
                 , top^#_1(11) -> 10
                 , c_8_1(5) -> 1
                 , c_9_0(3) -> 1
                 , c_9_1(8) -> 1
                 , c_9_1(10) -> 5}
      
   2) {  active^#(f(X)) -> c_1(f^#(active(X)))
       , f^#(ok(X)) -> c_6(f^#(X))
       , f^#(mark(X)) -> c_2(f^#(X))}
      
      The usable rules for this path are the following:
      {  active(f(f(a()))) -> mark(f(g(f(a()))))
       , active(f(X)) -> f(active(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(f(a()))) -> mark(f(g(f(a()))))
               , active(f(X)) -> f(active(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , active^#(f(X)) -> c_1(f^#(active(X)))
               , f^#(ok(X)) -> c_6(f^#(X))
               , f^#(mark(X)) -> c_2(f^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(X)) -> c_2(f^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(X)) -> c_2(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [6]
                  c_2(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [7]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(X)) -> c_6(f^#(X))}
            and weakly orienting the rules
            {f^#(mark(X)) -> c_2(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(X)) -> c_6(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_1(f^#(active(X)))}
            and weakly orienting the rules
            {  f^#(ok(X)) -> c_6(f^#(X))
             , f^#(mark(X)) -> c_2(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_1(f^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(f(a()))) -> mark(f(g(f(a()))))}
            and weakly orienting the rules
            {  active^#(f(X)) -> c_1(f^#(active(X)))
             , f^#(ok(X)) -> c_6(f^#(X))
             , f^#(mark(X)) -> c_2(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(f(a()))) -> mark(f(g(f(a()))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  active(f(f(a()))) -> mark(f(g(f(a()))))
                 , active^#(f(X)) -> c_1(f^#(active(X)))
                 , f^#(ok(X)) -> c_6(f^#(X))
                 , f^#(mark(X)) -> c_2(f^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  active(f(f(a()))) -> mark(f(g(f(a()))))
                   , active^#(f(X)) -> c_1(f^#(active(X)))
                   , f^#(ok(X)) -> c_6(f^#(X))
                   , f^#(mark(X)) -> c_2(f^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  a_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(7) -> 4
                 , ok_0(3) -> 7
                 , ok_0(4) -> 7
                 , ok_0(7) -> 7
                 , active^#_0(3) -> 9
                 , active^#_0(4) -> 9
                 , active^#_0(7) -> 9
                 , f^#_0(3) -> 11
                 , f^#_0(4) -> 11
                 , f^#_0(7) -> 11
                 , c_2_0(11) -> 11
                 , c_6_0(11) -> 11}
      
   3) {  proper^#(f(X)) -> c_3(f^#(proper(X)))
       , f^#(ok(X)) -> c_6(f^#(X))
       , f^#(mark(X)) -> c_2(f^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(a()) -> ok(a())
       , proper(g(X)) -> g(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(a()) -> ok(a())
               , proper(g(X)) -> g(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , proper^#(f(X)) -> c_3(f^#(proper(X)))
               , f^#(ok(X)) -> c_6(f^#(X))
               , f^#(mark(X)) -> c_2(f^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(X)) -> c_6(f^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(X)) -> c_6(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(X)) -> c_3(f^#(proper(X)))}
            and weakly orienting the rules
            {f^#(ok(X)) -> c_6(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(X)) -> c_3(f^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(X)) -> c_2(f^#(X))}
            and weakly orienting the rules
            {  proper^#(f(X)) -> c_3(f^#(proper(X)))
             , f^#(ok(X)) -> c_6(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(X)) -> c_2(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [8]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [12]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [13]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(a()) -> ok(a())}
            and weakly orienting the rules
            {  f^#(mark(X)) -> c_2(f^#(X))
             , proper^#(f(X)) -> c_3(f^#(proper(X)))
             , f^#(ok(X)) -> c_6(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(a()) -> ok(a())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [5]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [3]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [8]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  proper(a()) -> ok(a())
                 , f^#(mark(X)) -> c_2(f^#(X))
                 , proper^#(f(X)) -> c_3(f^#(proper(X)))
                 , f^#(ok(X)) -> c_6(f^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  proper(a()) -> ok(a())
                   , f^#(mark(X)) -> c_2(f^#(X))
                   , proper^#(f(X)) -> c_3(f^#(proper(X)))
                   , f^#(ok(X)) -> c_6(f^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  a_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(7) -> 4
                 , ok_0(3) -> 7
                 , ok_0(4) -> 7
                 , ok_0(7) -> 7
                 , f^#_0(3) -> 11
                 , f^#_0(4) -> 11
                 , f^#_0(7) -> 11
                 , c_2_0(11) -> 11
                 , proper^#_0(3) -> 14
                 , proper^#_0(4) -> 14
                 , proper^#_0(7) -> 14
                 , c_6_0(11) -> 11}
      
   4) {active^#(f(X)) -> c_1(f^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(f(f(a()))) -> mark(f(g(f(a()))))
       , active(f(X)) -> f(active(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(f(a()))) -> mark(f(g(f(a()))))
               , active(f(X)) -> f(active(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , active^#(f(X)) -> c_1(f^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_1(f^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_1(f^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [3]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(f(a()))) -> mark(f(g(f(a()))))}
            and weakly orienting the rules
            {active^#(f(X)) -> c_1(f^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(f(a()))) -> mark(f(g(f(a()))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  active(f(f(a()))) -> mark(f(g(f(a()))))
                 , active^#(f(X)) -> c_1(f^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  active(f(f(a()))) -> mark(f(g(f(a()))))
                   , active^#(f(X)) -> c_1(f^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  a_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(7) -> 4
                 , ok_0(3) -> 7
                 , ok_0(4) -> 7
                 , ok_0(7) -> 7
                 , active^#_0(3) -> 9
                 , active^#_0(4) -> 9
                 , active^#_0(7) -> 9
                 , f^#_0(3) -> 11
                 , f^#_0(4) -> 11
                 , f^#_0(7) -> 11}
      
   5) {  proper^#(g(X)) -> c_5(g^#(proper(X)))
       , g^#(ok(X)) -> c_7(g^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(a()) -> ok(a())
       , proper(g(X)) -> g(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(a()) -> ok(a())
               , proper(g(X)) -> g(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , proper^#(g(X)) -> c_5(g^#(proper(X)))
               , g^#(ok(X)) -> c_7(g^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  proper^#(g(X)) -> c_5(g^#(proper(X)))
             , g^#(ok(X)) -> c_7(g^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper^#(g(X)) -> c_5(g^#(proper(X)))
               , g^#(ok(X)) -> c_7(g^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [8]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [1]
                  g^#(x1) = [1] x1 + [3]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(a()) -> ok(a())}
            and weakly orienting the rules
            {  proper^#(g(X)) -> c_5(g^#(proper(X)))
             , g^#(ok(X)) -> c_7(g^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(a()) -> ok(a())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [4]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  g^#(x1) = [1] x1 + [9]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  proper(a()) -> ok(a())
                 , proper^#(g(X)) -> c_5(g^#(proper(X)))
                 , g^#(ok(X)) -> c_7(g^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  proper(a()) -> ok(a())
                   , proper^#(g(X)) -> c_5(g^#(proper(X)))
                   , g^#(ok(X)) -> c_7(g^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  a_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(7) -> 4
                 , ok_0(3) -> 7
                 , ok_0(4) -> 7
                 , ok_0(7) -> 7
                 , proper^#_0(3) -> 14
                 , proper^#_0(4) -> 14
                 , proper^#_0(7) -> 14
                 , g^#_0(3) -> 18
                 , g^#_0(4) -> 18
                 , g^#_0(7) -> 18
                 , c_7_0(18) -> 18}
      
   6) {proper^#(f(X)) -> c_3(f^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(a()) -> ok(a())
       , proper(g(X)) -> g(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(a()) -> ok(a())
               , proper(g(X)) -> g(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , proper^#(f(X)) -> c_3(f^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(X)) -> c_3(f^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(X)) -> c_3(f^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(a()) -> ok(a())}
            and weakly orienting the rules
            {proper^#(f(X)) -> c_3(f^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(a()) -> ok(a())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a() = [4]
                  mark(x1) = [1] x1 + [2]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [4]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [8]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [15]
                  c_3(x1) = [1] x1 + [1]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  proper(a()) -> ok(a())
                 , proper^#(f(X)) -> c_3(f^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  proper(a()) -> ok(a())
                   , proper^#(f(X)) -> c_3(f^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  a_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(7) -> 4
                 , ok_0(3) -> 7
                 , ok_0(4) -> 7
                 , ok_0(7) -> 7
                 , f^#_0(3) -> 11
                 , f^#_0(4) -> 11
                 , f^#_0(7) -> 11
                 , proper^#_0(3) -> 14
                 , proper^#_0(4) -> 14
                 , proper^#_0(7) -> 14}
      
   7) {proper^#(g(X)) -> c_5(g^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(a()) -> ok(a())
       , proper(g(X)) -> g(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(a()) -> ok(a())
               , proper(g(X)) -> g(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , proper^#(g(X)) -> c_5(g^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(g(X)) -> c_5(g^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(g(X)) -> c_5(g^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  g^#(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(a()) -> ok(a())}
            and weakly orienting the rules
            {proper^#(g(X)) -> c_5(g^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(a()) -> ok(a())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a() = [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [5]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [11]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [5]
                  g^#(x1) = [1] x1 + [3]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  proper(a()) -> ok(a())
                 , proper^#(g(X)) -> c_5(g^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  proper(a()) -> ok(a())
                   , proper^#(g(X)) -> c_5(g^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  a_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(7) -> 4
                 , ok_0(3) -> 7
                 , ok_0(4) -> 7
                 , ok_0(7) -> 7
                 , proper^#_0(3) -> 14
                 , proper^#_0(4) -> 14
                 , proper^#_0(7) -> 14
                 , g^#_0(3) -> 18
                 , g^#_0(4) -> 18
                 , g^#_0(7) -> 18}
      
   8) {active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))}
      
      The usable rules for this path are the following:
      {  f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  a() = [14]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [2]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules: {active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules: {active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  a_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(7) -> 4
                 , ok_0(3) -> 7
                 , ok_0(4) -> 7
                 , ok_0(7) -> 7
                 , active^#_0(3) -> 9
                 , active^#_0(4) -> 9
                 , active^#_0(7) -> 9
                 , f^#_0(3) -> 11
                 , f^#_0(4) -> 11
                 , f^#_0(7) -> 11}
      
   9) {proper^#(a()) -> c_4()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           a() = [0]
           mark(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5(x1) = [0] x1 + [0]
           g^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(a()) -> c_4()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(a()) -> c_4()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(a()) -> c_4()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  a() = [0]
                  mark(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(a()) -> c_4()}
            
            Details:         
              The given problem does not contain any strict rules